Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 921: 170983, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38367718

RESUMEN

Reservoirs play a crucial role in regulating runoff and generating energy. However, they also lead to significant sedimentation in the reservoir area. In this study, we propose an integrated model that combines a 1-D hydro- and sediment dynamic module with a power generation module. The model considers both suspended and bed load transports. This model is applied to the Three Gorges Reservoir (TGR) and evaluate its performance against corresponding measurements. The results demonstrate that:① the proposed model accurately reproduces the processes of flow and sediment transport, bed deformation, and power generation during the hydrological years of 2019 and 2020. The relative errors for average discharge and bed deformation volume are <6 % and 10 %, respectively. Moreover, the calculated total power (982 × 108-1115 × 108 kW·h) closely agree with the measured values (969 × 108-1118 × 108 kW·h); ② the inflows of small tributaries have a noticeable impact on the calculated water discharge in the TGR. This impact will lead to a 16 % increase in average discharge and alter the magnitudes and occurrence times of flood peaks; ③ the flocculation of fine sediment particles significantly affects sediment transport, particularly in the sub-reach close to the dam. This flocculation will result in a 37 %-57 % reduction in average suspended sediment discharge and a 63 %-93 % reduction in peak sediment discharge. This research provides a comprehensive tool for simulating flow and sediment transport as well as power generation, which can support the optimal regulation of the TGR.

2.
Environ Sci Pollut Res Int ; 31(8): 12019-12035, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38228951

RESUMEN

Aquatic animals are popular for their unique umami and high-quality protein. However, under the realistic background of increasing marine pollution, whether it affects the aquatic animal tastes, and what the interference mechanism is still remains unknown. Benzo[a]pyrene (B[a]P) is a typical Polycyclic aromatic hydrocarbons (PAHs) with high toxicity. In this study, we investigated the effects of B[a]P (0, 0.8, 4 and 20 µg/L) on the content and taste evaluation of Ruditapes philippinarum taste substances, and clarified the interference mechanism of B[a]P on taste substance metabolisms with transcriptome analysis. The results demonstrated that B[a]P significantly altered the contents and taste activity values (TAVs) of free amino acids (FAAs), 5'-nucleotides, organic acids, flavor peptides, organic bases, sugars and inorganic ions, as well as the gene expressions within their synthesis and decomposition, indicating that B[a]P affected these taste substance contents by interfering with their metabolisms, thereby changing the clam tastes (decreases of umami and sweetness, and increase of bitter taste). This study provided scientific basis for quality assurance of bivalve cultivation and control of marine pollution.


Asunto(s)
Bivalvos , Hidrocarburos Policíclicos Aromáticos , Animales , Benzo(a)pireno/toxicidad , Benzo(a)pireno/metabolismo , Gusto , Perfilación de la Expresión Génica , Hidrocarburos Policíclicos Aromáticos/metabolismo
3.
Environ Toxicol Chem ; 43(4): 748-761, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38088252

RESUMEN

Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon (PAH) with the most carcinogenic effects of all the PAHs, has multiple toxic effects on marine bivalves. We investigated the interference mechanism of B[a]P on food metabolism (sugars, proteins, and sugars), and on reproductive endocrine and ovarian development in female scallops (Chlamys farreri). Scallops were exposed to different concentrations of B[a]P concentrations of 0, 0.38, 3.8, and 38 µg/L throughout gonadal development. Total cholesterol and triglyceride contents in the digestive glands were increased, and their synthesis genes were upregulated. The plasma glucose contents decreased with the inhibition of glycogen synthesis genes and the induction of glycolysis genes in the digestive gland. The results showed that B[a]P had endocrine-disrupting effects on scallops, that it negatively affected genes related to ovarian cell proliferation, sex differentiation, and egg development, and that it caused damage to ovarian tissue. Our findings supplement the information on B[a]P disruption in gonadal development of marine bivalves. Environ Toxicol Chem 2024;43:748-761. © 2023 SETAC.


Asunto(s)
Benzo(a)pireno , Pectinidae , Animales , Femenino , Benzo(a)pireno/toxicidad , Benzo(a)pireno/metabolismo , Diferenciación Sexual , Pectinidae/genética , Pectinidae/metabolismo , Alimentos Marinos , Azúcares/farmacología
4.
Environ Sci Pollut Res Int ; 30(53): 113587-113599, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37851259

RESUMEN

Sodium pentachlorophenol (PCP-Na) is widespread in the marine environment; however, its impact on marine organisms remains under-researched. Moerella iridescens and Exopalaemon carinicauda are marine species of economic importance in China and under threat from PCP-Na pollution. Thus, this study aimed to assess the toxicity and detoxification metabolism of PCP-Na on M. iridescens and E. carinicauda. The study revealed that the 96 h median lethal concentration (LC50) of PCP-Na for M. iridescens and E. carinicauda were 9.895 mg/L and 14.143 mg/L, respectively. A species sensitivity distribution (SSD) for PCP-Na was developed specifically for marine organisms, determining a hazardous concentration to 5% of the species (HC5) of 0.047 mg/L. During the sub-chronic exposure period, PCP-Na accumulated significantly in M. iridescens and E. carinicauda, with highest concentrations of 41.22 mg/kg in the soft tissues of M. iridescens, 42.58 mg/kg in the hepatopancreas of E. carinicauda, and only 0.85 mg/kg in the muscle of E. carinicauda. Furthermore, the study demonstrated that detoxifying metabolic enzymes and antioxidant defense system enzymes of E. carinicauda responded stronger to PCP-Na compared to M. iridescens, suggesting that E. carinicauda may possess a stronger detoxification capacity. Notably, five biomarkers were identified and proposed for monitoring and evaluating PCP-Na contamination. Overall, the results indicated that M. iridescens and E. carinicauda exhibit greater tolerance to PCP-Na than other marine species, but they are susceptible to accumulating PCP-Na in their tissues, posing a significant health risk. Consequently, conducting aquatic health risk assessments in areas with potential PCP-Na contamination is strongly recommended.


Asunto(s)
Bivalvos , Palaemonidae , Pentaclorofenol , Animales , Pentaclorofenol/toxicidad , Pentaclorofenol/metabolismo , Sodio/metabolismo , Organismos Acuáticos
5.
Artículo en Inglés | MEDLINE | ID: mdl-37661044

RESUMEN

As one of the most carcinogenic persistent organic pollutants (POPs), benzo[a]pyrene (B [a]P) brings high toxicity to marine bivalves. Digestive gland is the most important metabolism-related organ of aquatic animals. This study conducted the digestive gland transcriptome of Chlamys farreri under B[a]P treatment at reproductive stages. And the reproductive-stage dependence metabolism-DNA repair-apoptosis process of scallops under 0, 0.04, 0.4 and 4 µg/L B[a]P was studied by qRT-PCR. The results demonstrated that the detoxification metabolism was disturbed after ovulation except for CYP3A4. In antioxidant system, antioxidant enzyme CAT and GPX, and GGT1 (one of the non-enzymatic antioxidants synthesis gene) continuously served the function of antioxidant defense. Three types of DNA repair were activated under B[a]P stress, however, DNA strand breaks were still serious. B[a]P exposure weakened death receptor pathway as well as enhanced mitochondrial pathway, surprisingly suppressing apoptosis in scallops. In addition, ten indicators were screened by Spearman correlation analysis. This study will provide sound theoretical basis for bivalve toxicology and contribute to the biomonitoring of marine POPs pollution.


Asunto(s)
Benzo(a)pireno , Pectinidae , Femenino , Animales , Benzo(a)pireno/toxicidad , Antioxidantes , Pectinidae/genética , Daño del ADN , Apoptosis
6.
Environ Pollut ; 328: 121667, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37080513

RESUMEN

Benzo[a]pyrene (B[a]P) is one kind of persistent organic pollutants (POPs) in the marine environment which has multiple toxic effects. However, epigenetic studies correlated with reproductive endocrine disruption in invertebrates have not been explored. In our study, Chlamys farreri in the mature stage were exposed to B[a]P (0, 0.4, 2 and 10 µg/L) for 5 and 10 d to explore the effects on reproductive endocrine and DNA methylation. The results proved that B[a]P stress significantly restrained the growth of mature oocytes, reduced the content of sex hormones, and affected the expression of genes related to ovarian development. Histological observation showed that the ovarian microstructure was damaged. The detection of SAM/SAH, dnmts, GNMT in the ovary showed that the level of global DNA methylation fluctuated. Significant hypermethylation of the hsd17ß promoter region in the ovary was associated with a significant downregulation of its gene expression. In summary, our results suggested that exposure to B[a]P might affect DNA methylation to regulate key reproductive genes, interfere with the synthesis of sex hormones, and inhibit ovarian development. These findings provide a basis for a better understanding of how epigenetic mechanisms are involved in the response of marine invertebrates to POPs stress, opening up new avenues for incorporating environmental epigenetic approaches into marine invertebrate management and conservation plans.


Asunto(s)
Benzo(a)pireno , Pectinidae , Femenino , Animales , Benzo(a)pireno/toxicidad , Benzo(a)pireno/metabolismo , Metilación de ADN , Ovario/metabolismo , Hormonas Esteroides Gonadales/metabolismo , Pectinidae/genética
7.
Chemosphere ; 331: 138787, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37119930

RESUMEN

Benzo[a]pyrene (B[a]P) commonly bioaccumulates in lipid-rich tissues due to its lipophilicity and further affects lipid metabolism. The present study systematically investigated the lipid metabolism disturbance in digestive glands of scallops (Chlamys farreri) exposure to B[a]P, based on lipidomics, transcriptomics, molecular and biochemical analysis. We exposed the scallops to environmentally relevant concentrations of B[a]P for 21 days. The bioaccumulation of B[a]P, lipid content and lipid peroxidation in digestive glands were measured. Integrated lipidomics and transcriptomics analysis, the differential lipid species were identified and key genes based on the pathways in which genes and lipid species involved together were selected in scallop exposure to 10 µg/L B[a]P. The changes of lipid profile showed that triglycerides (TGs) were accumulated after 21 days exposure, while the phospholipids (PLs) decreased demonstrated membrane structures were disrupted by B[a]P. In combination with the change of gene expression, we speculated that B[a]P could induce lipids accumulation by up-regulating lipid synthesis-related genes expression, down-regulating lipolysis-related genes expression and interfering with lipid transport. Overall, this study provides new insights into the mechanisms of lipid metabolism disturbance in bivalves exposed to PAHs, and establishes a foundation for understanding the bioaccumulation mechanism of B[a]P in aquatic organisms, which is of great importance for further ecotoxicological study.


Asunto(s)
Metabolismo de los Lípidos , Pectinidae , Animales , Benzo(a)pireno/toxicidad , Benzo(a)pireno/metabolismo , Transcriptoma , Lipidómica , Pectinidae/genética , Pectinidae/metabolismo , Lípidos
8.
Mar Environ Res ; 183: 105845, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36525829

RESUMEN

Currently, research on toxic effects of PCP Na is greatly insufficient. The aim of this study is to explore the toxic effects of PCP-Na for better conducting future work on PCP-Na toxicology. For this purpose, S. constricta adults were exposed to PCP-Na for toxicity testing. The results showed that PCP-Na could easily bioaccumulate in S. constricta and significantly affected both phrase I and II metabolism enzymes. Meanwhile, PCP-Na strongly activated antioxidant system and caused PC, LPO and DNA damage. In addition, neurotoxicity and immunotoxicity of PCP-Na was demonstrated in this study. Interestingly, we observed that PCP-Na significantly affected the expression of genes of electron transport chain and induced key enzymes of glycolysis, indicating that PCP-Na may act as an uncoupler of oxidative phosphorylation, interfering with energy supply and causing energy compensation. This study is the first to fully analyze and provide a new perspective on the toxicity of PCP-Na.


Asunto(s)
Bivalvos , Pentaclorofenol , Animales , Pentaclorofenol/toxicidad , Pentaclorofenol/metabolismo , Sodio/metabolismo , Bivalvos/metabolismo , Alimentos Marinos , Antioxidantes
9.
Fish Shellfish Immunol ; 124: 208-218, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35413479

RESUMEN

Benzo[a]pyrene (B[a]P), a typical PAHs widely existing in the marine environment, has been extensively studied for its immunotoxicity due to its persistence and high toxicity. Nevertheless, the immunotoxicity mechanism remain incompletely understood. In this study, isolated hemocytes of Chlamys farreri were exposed at three concentrations of B[a]P (5, 10 and 15 µg/mL), and the effects of B[a]P on detoxification metabolism, signal transduction, humoral immune factors, exocytosis and phagocytosis relevant proteins and immune function at 0, 6, 12, 24 h were studied. Results illustrated the AhR, ARNT and CYP1A1 were significantly induced by B[a]P at 12 h. Additionally, the content of B[a]P metabolite BPDE increased in a dose-dependent manner with pollutants. Under B[a]P stimulation, the expressions of PTK (Src, Fyn) and PLC-Ca2+-PKC pathway gene increased significantly, while the transcription level of AC-cAMP-PKA pathway gene decreased remarkably. Additionally, the expressions of nuclear transcription factors (CREB, NF-κB), complement system genes and C-type lectin genes up-regulated obviously. The gene expressions of phagocytosis and exocytosis related proteins were also notably affected. 5 µg/mL B[a]P could promote phagocytosis in a transitory time, but with the increase of exposure time and concentration of B[a]P, the phagocytosis, antibacterial and bacteriolytic activities gradually decreased. These results indicated that similar to vertebrates, BPDE, the metabolite of B[a]P, mediated downstream signal transduction via PTK in bivalves. The declined of the immune defense ability of hemocytes might be closely related to the inhibition of AC-cAMP-PKA pathway and the imbalance of intracellular Ca2+ pathway. In addition, the results manifested that complement and lectin systems play a significant role in regulating immune response. In this study, the direct relationship between detoxification metabolism and immune signal transduction in bivalves under B[a]P stress was demonstrated for the first time, which provided important information for the potential molecular mechanism of B[a]P-induced immune system disorder in bivalves.


Asunto(s)
Benzo(a)pireno , Pectinidae , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/metabolismo , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/farmacología , Animales , Benzo(a)pireno/toxicidad , Hemocitos/metabolismo , Transducción de Señal
10.
Environ Sci Pollut Res Int ; 29(32): 48675-48693, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35195870

RESUMEN

Reproductive toxicity induced by benzo[a]pyrene (B[a]P) exposure has received great ecotoxicological concerns. However, huge gaps on the molecular mechanism still exist in bivalves. In this study, reproduction-related indicators were investigated in female scallops Chlamys farreri during life cycle of proliferative, growth, mature, and spawn stages, under gradient concentrations of B[a]P at 0, 0.04, 0.4, and 4 µg/L. Meanwhile, a multi-stage ovarian transcriptome analysis under 4 µg/L B[a]P exposure was also conducted to elucidate the potential molecular mechanisms. The results indicated that life-cycle exposure to 0.4 and 4 µg/L B[a]P significantly decreased GSI and sex steroid levels. Even 0.04 µg/L B[a]P could play the adverse role in DNA integrity at the mature and spawn stages. Ovarian histological sections showed that B[a]P inhibited the maturation and release of oocytes. Through the functional enrichment analysis of differentially expressed genes (DEGs) from transcriptome data, 18 genes involved in endocrine disruption effects, DNA damage and repair, and oogenesis were selected and further determined by qRT-PCR. The downregulation of genes involved in steroidogenic and estrogen signaling pathways indicated that B[a]P could cause endocrine disruption through both receptor-dependent and receptor-independent pathways. The variations of gene expressions involved in DNA single-strand break and repair implied the presence of toxic mechanisms similar with vertebrates. Additionally, the changes of gene expressions of cell cycle, apoptosis, and cell adhesion suggested that exposure to B[a]P possibly caused the reproductive toxicity effects by affecting oogenesis. Taken together, this study was a pioneer in combining genome-wide transcriptomic analysis with its corresponding reproductive indicators (GSI, sex steroid levels, DNA single-strand break, and histological sections) to explore the bivalves' toxic mechanisms under B[a]P exposure. Meanwhile, some genes involved in estrogen signaling pathway and DNA damage were firstly analyzed in bivalves, and the expression data might be useful in establishing new hypotheses and discovering new biomarkers for marine biomonitoring.


Asunto(s)
Benzo(a)pireno , Pectinidae , Animales , Benzo(a)pireno/metabolismo , Benzo(a)pireno/toxicidad , Estrógenos/metabolismo , Femenino , Hormonas Esteroides Gonadales/metabolismo , Pectinidae/genética , Reproducción , Esteroides
11.
Environ Pollut ; 299: 118904, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35091022

RESUMEN

Lipids are the main energy support during gametogenesis. Digestive gland is the key organ of aquatic animal metabolism for storing nutrition and supplying energy. It participates in a variety of life activities (such as growth, digestion, immunity, and reproduction). Nutrients stored in digestive glands, especially lipids, provide energy for reproductive behaviors such as gametogenesis and ovulation. A large number of studies have confirmed the accumulation of lipids from digestive gland to gonad during gametogenesis. At present, the research on the interference mechanism of persistent organic pollutants (POPs) on lipid metabolism of aquatic animals and the adaptive response of aquatic animals to POPs stress focus on biochemical levels or a few genes. The potential molecular mechanism of lipid metabolism interference needs to be further studied. In addition, as an important stage of aquatic animals, the reproductive period is a vigorous period of lipid metabolism. However, at present, there is no report on the molecular mechanism of POPs interfering with the lipid metabolism of the digestive gland in the reproductive process of aquatic animals. In this study, female scallop C. farreri was cultured in natural seawater and exposed to 4 µg/L B[a]P in seawater. Transcriptome analysis of digestive glands at multiple stages (proliferative stage, growth stage, mature stage and spawn stage) was performed, and iPath pathway analysis was used to analyze lipid metabolism pathways and differential genes. The interference mechanism of lipid metabolism in bivalves during reproductive period was revealed. This study will provide valuable genomic information on the role of digestive glands in lipid metabolism and reproduction of C. farreri, and will contribute to further functional genomics of bivalves and other closely related species.


Asunto(s)
Metabolismo de los Lípidos , Pectinidae , Animales , Benzo(a)pireno/metabolismo , Femenino , Perfilación de la Expresión Génica , Reproducción
12.
J Environ Sci (China) ; 112: 129-139, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34955196

RESUMEN

This study analyzed the function of different glutathione S-transferase (GST) isoforms and detoxification metabolism responses in Manila clam, Ruditapes philippinarum, exposed to 4 kinds of polycyclic aromatic hydrocarbons (PAHs) single, and their mixtures for 15 days under laboratory conditions. 13 kinds of GSTs in R. philippinarum were classified, and the results of tissue distribution indicated that 12 kinds of GSTs (except GST sigma 3) expressed most in digestive glands. We detected the mRNA expression levels of aryl hydrocarbon receptor signaling pathway, and detoxification system in digestive glands of clams exposed to benzo[a]pyrene (BaP), chrysene (CHR), benzo[a]anthracene (BaA), benzo[b]fluoranthene (BbF), and BaP + CHR + BaA + BbF, respectively. Among these genes, we selected GST-sigma, GST-omega and GST-pi as potential indicators to BaP; GST-sigma, GST-A and GST-rho to CHR; GST-pi, GST-sigma, GST-A, GST-rho and GST-microsomal to BaA; GST-theta and GST-mu to BbF; while GST-pi and GST-mu to the mixture of BaP, CHR, BaA and BbF. Additionally, the bioaccumulation of PAHs in tissues increased remarkably over time, and showed an obvious dose-effect. Under the same concentration, the bioaccumulation in single exposure group was higher than that in mixture group, and the bioaccumulation of PAHs in tissues with different concentrations of stress was irregular. The results revealed the metabolic differences and bioaccumulation rules in clams exposed to four kinds of PAHs, and provided more valuable information for the PAHs risk assessment.


Asunto(s)
Bivalvos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Bioacumulación , Bivalvos/efectos de los fármacos , Bivalvos/enzimología , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/toxicidad , Isoformas de Proteínas , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
13.
Sci Total Environ ; 799: 149471, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34371399

RESUMEN

The gut tissue interacts with nutrients and pollutants which can impact gut health. Gut microbiota is essential to the host health, but is also easily affected by external environment. However, little is known about the toxicological assessment of environmental contaminants on gut health and microbiota, especially in marine invertebrates. In this study, we first explored the effect of benzo(a)pyrene (BaP) on the gut health and gut microbiota of scallops (Chlamys farreri). The scallops were exposed to different concentrations (0, 0.4, 2 and 10 µg/L) of BaP for 21 days. The histological morphology, immune- and oxidative enzyme-related gene expression, and lipid peroxidation of the scallops were analyzed at 7, 14 and 21 days. The results revealed that BaP could impair intestinal barrier function, increasing the intestinal permeability of scallops. Moreover, immune and antioxidant responses were induced in the gut tissue. After a 21-day exposure to different concentrations of BaP, the intestinal microbial community was analyzed based on 16S rRNA sequencing. Our results suggested that BaP exposure altered the gut microbial diversity and composition in scallops. Many beneficial genera declined after BaP treatment, while the potential pathogens were increased, such as Mycoplasma and Tenacibaculum. A series of hydrocarbon-degrading bacteria were recognized in BaP-treated groups, such as Pseudomonas, Polaribacter, Amphritea and Kordiimonas. Interestingly, the degrading bacteria present varied after exposure to different concentrations of BaP. Overall, this study provides new insights into gut health and gut microbiota in marine invertebrates following exposure to persistent organic pollutants.


Asunto(s)
Microbioma Gastrointestinal , Pectinidae , Animales , Benzo(a)pireno/toxicidad , Peroxidación de Lípido , ARN Ribosómico 16S/genética
14.
Environ Pollut ; 283: 117084, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33848904

RESUMEN

Benzo[a]pyrene (B[a]P), a representative polycyclic aromatic hydrocarbon (PAH) compound in marine ecosystem, has great potential for chronic toxicity to marine animals. It is becoming increasingly apparent that reproductive system is the major target of B[a]P, but the adverse effects of B[a]P on subcellular fractions in bivalve gonads have not been elucidated. Scallops Chlamys farreri are used as the experimental species since they are sensitive to environmental pollutants. This study was conducted to investigate how B[a]P affected the gonadal subcellular fractions, including plasma membrane, nucleus, mitochondria and microsome in scallops, and whether subcellular damages were related to reproductive toxicity. The results showed that mature gametes' counts were significantly decreased in B[a]P-treated scallops. Three biological macromolecules (viz., DNA, lipids and proteins) in gonadal subcellular fractions obtained by differential centrifugation suffered damages, including DNA damage, lipid peroxidation and protein carbonylation in B[a]P treatment groups. Interestingly, mitochondria and microsome were more vulnerable to lipid peroxidation and protein carbonylation than plasma membrane and nucleus, meanwhile males were more susceptible to DNA damage than females under B[a]P exposure. In addition, histological analysis showed that B[a]P delayed gonadal development in C. farreri. To summarize, our results indicated that B[a]P caused damages to biological macromolecules in gonadal subcellular fractions and then induced damages to gonadal tissues of C. farreri, which further inhibited gonadal development and ultimately leaded to reduction in fertility. This study firstly reports the impacts of PAHs on subcellular fractions in bivalves and their relationship with reproductive toxicity. Moreover, exposure of reproductive scallops to B[a]P leads to defects in reproduction, raising concerns on the possible long-term consequences of PAHs for natural populations of bivalves.


Asunto(s)
Benzo(a)pireno , Pectinidae , Animales , Benzo(a)pireno/toxicidad , Ecosistema , Femenino , Fertilidad , Gónadas , Masculino , Fracciones Subcelulares
15.
Sci Total Environ ; 746: 142032, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33027874

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are one of the most widespread persistent organic pollutants (POPs) in marine environment. Benzo[a]pyrene (B[a]P), the most toxic carcinogen of PAHs, is widely studied as a representative that interferes with lipid metabolism. However, the underlying molecular mechanisms of lipid metabolism by B[a]P interference towards bivalve, one of the marine-pollution bio-indicators have not been elucidated yet, especially during gonadal development which is closely associated with lipids. In this study, female scallops Chlamys farreri were cultured with natural and 4 µg/L B[a]P exposed seawater, respectively, and a multi-stage (proliferative, growth, mature, and spawn stage) ovarian transcriptome profiling was performed to decipher the reproductive stage-dependence disturbing mechanisms on lipid metabolism caused by B[a]P in bivalves. The results revealed the potential molecular mechanism of B[a]P-induced triglycerides (TGs) accumulation, which probably resulted from the collaboration of promoting synthesis and inhibiting metabolization of TGs, notably, this mechanism also occurred at spawn stage. Correspondingly, B[a]P and TGs contents measured in ovary offered direct biochemical evidences for the interference effects and stage-dependent accumulation patterns of B[a]P. Moreover, the gene expressions of fatty acids synthesis related enzymes were down-regulated cooperatively, illustrating the molecular compensatory mechanism that reduced susceptibility from oxidative damage. And these results further emphasized the important role of prostaglandins (PGs) in immune response mediated by arachidonic acid metabolism. In addition, this study explored the underlying molecular mechanism affected by B[a]P on sterol metabolism, which possibly posed a threat to normal reproductive functions in bivalves. Taken together, our findings filled the gap of the stage-dependent interference molecular mechanisms on lipid metabolism behind bivalves, and provided a new perspective for investigating the adaptive mechanisms of bivalves under POPs stress.


Asunto(s)
Benzo(a)pireno , Pectinidae , Animales , Benzo(a)pireno/toxicidad , Femenino , Perfilación de la Expresión Génica , Metabolismo de los Lípidos , Pectinidae/genética , Reproducción
16.
Environ Res ; 191: 110125, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32861722

RESUMEN

Benzo[a]pyrene (BaP), a model compound of polycyclic aromatic hydrocarbon known to impair reproductive functions of vertebrates, while the data is scarce in marine invertebrates. To investigate the toxic effects of BaP on invertebrates reproduction, we exposed male scallop (Chlamys farreri) to BaP (0, 0.38 and 3.8 µg/L) throughout three stages of reproductive cycle (early gametogenesis stage, late gametogenesis stage and ripe stage). The results demonstrated that BaP decreased the gonadosomatic index and mature sperms counts in a dose-dependent manner. Significant changes in sex hormones contents and increased 17ß-estradiol/testosterone ratio suggested that BaP produced the estrogenic endocrine effects in male scallops. In support of this view, we confirmed that BaP significantly altered transcripts of genes along the upstream PKA and PKC mediated signaling pathway like fshr, lhcgr, adcy, PKA, PKC, PLC and NR5A2. Subsequently, the expressions of genes encoding downstream steroidogenic enzymes (e.g., 3ß-HSD, CYP17 and 17ß-HSD) were impacted, which corresponded well with hormonal alterations. In addition, BaP suppressed transcriptions of spermatogenesis-related genes, including ccnd2, SCP3, NRF1 and AQP9. Due to different functional demands, these transcript profiles involved in spermatogenesis exhibited a stage-specific expression pattern. Furthermore, histopathological analysis determined that BaP significantly inhibited testicular development and maturation in male scallops. Overall, the present findings indicated that, playing as an estrogenic-like chemical, BaP could disrupt the steroidogenesis pathway, impair spermatogenesis and caused histological damages, thereby inducing reproductive toxicities with dose- and stage-specific effects in male scallops. And the adverse outcomes might threaten the stability of bivalve populations and destroy the function of marine ecosystems in the long term.


Asunto(s)
Benzo(a)pireno , Pectinidae , Animales , Benzo(a)pireno/toxicidad , Ecosistema , Masculino , Pectinidae/genética , Reproducción , Espermatogénesis
17.
Environ Res ; 190: 109980, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32800894

RESUMEN

This study aimed to investigate the detoxification metabolism responses in scallop Chlamys farreri exposed to phenanthrene (PHE), chrysene (CHR), benzo[a]pyrene (B[a]P) and PHE + CHR + B[a]P for 15 days under laboratory conditions. The mRNA expression levels of AhR signaling pathway (AhR, HSP90, XAP2 and ARNT), detoxification system (phase I: CYP1A1 and CYP1B1; phase II: SULTs, UGT and GSTs) and ATP-binding cassette transporters (phase 0: ABCB1 and phase III: ABCC1, ABCG2) in digestive glands of scallops exposed to PHE (0.7, 2.1 µg/L), CHR (0.7, 2.1 µg/L), B[a]P (0.7, 2.1 µg/L), and PHE + CHR + B[a]P (0.7 + 0.7 +0.7, 2.1 + 2.1 + 2.1 µg/L) were detected. In present study, key genes (AhR, HSP90, XAP2 and ARNT) of the AhR signaling pathway can be significantly induced by pollutants, suggesting that the AhR/ARNT signaling pathway plays a role directly or indirectly. AhR, HSP90 and ARNT reached the maximum value on day 6, which can be preliminarily understood as the synchronization of their functions. Besides, the results also indicated that different genes had specific response to different pollution exposure. CYP1B1, GST-2, GST-omega and GST-microsomal could be potional indexes to PHE, ARNT, GST-sigma 2 and GST-3 were sensitive to CHR exposure, HSP90, GST-theta and ABCG2 were considered as potional indexes to BaP while CYP1A1 and UGT were possible to be indexes for monitoring the mix exposure of these three PAHs. These findings in C. farreri suggested that phase II detoxification metabolic enzymes isoforms played an essential role in detoxification mechanisms and mRNA expression levels of specific SULTs, UGTs and GSTs were potentially to be ideal indexes in PAHs pollution research. In summary, this study provides more valuable information for the risk assessments of different rings of PAHs.


Asunto(s)
Pectinidae , Contaminantes Químicos del Agua , Animales , Benzo(a)pireno/toxicidad , Fase II de la Desintoxicación Metabólica , Isoformas de Proteínas/genética , Transducción de Señal , Contaminantes Químicos del Agua/toxicidad
18.
Gene ; 758: 144967, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-32707299

RESUMEN

Bivalve mollusks are descendants of an early-Cambrian lineage and have successfully evolved unique strategies for reproduction. Nonetheless, the molecular mechanisms underlying reproductive regulation in mollusks remain to be elucidated. In this study, transcriptomes of ovary at four reproductive stages in female Chlamys farreri were characterized by RNA-Seq. Regarding signaling pathways, ECM-receptor interaction pathway, mTOR signaling pathway, Fanconi anemia pathway, FoxO signaling pathway, Wnt signaling pathway and Hedgehog signaling pathway were enriched during ovarian development processes. In addition, pathways related to energy metabolism such as Nitrogen metabolism and Arachidonic acid metabolism were enriched at spawn stage. Interestingly, Neuroactive ligand-receptor interaction was significantly enriched involved in ovarian development and spawn, and indicated the potential functions of nervous system on reproductive regulation in C. farreri. What's more, this study identified and characterized fourteen genes involved in "sex hormones synthesis and regulation", "ovarian development and spawn" and "maternal immunity" during the four reproductive stages in C. farreri. We determined that CYP17 uniquely affected gamete release by influencing the physiological balance among the steroid hormones and showed that receptors of the 5-HT and GABA neurotransmitters were tightly associated with ovarian maturation. Furthermore, to the best of our knowledge, this is the first study to report the maternal effect gene Zar1 in bivalve mollusks, likewise the maternal immunity genes displayed coordinated and cooperative expression during reproductive periods, which strengthened the environmental adaptation mechanisms of bivalves. Taken together, this study provides the first dynamic transcriptomic analysis of C. farreri at four key reproductive stages, which will assist in revealing the molecular mechanisms underlying bivalves on reproductive regulation in ovarian development and spawn.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Ovario/crecimiento & desarrollo , Pectinidae/crecimiento & desarrollo , Pectinidae/genética , Transcriptoma/genética , Animales , Metabolismo Energético/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Femenino , Factores de Transcripción Forkhead/metabolismo , Proteínas Hedgehog/metabolismo , Reproducción/genética , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/genética
19.
Sci Total Environ ; 726: 138585, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32315858

RESUMEN

Benzo[a]pyrene (B[a]P), as one of the typical polycyclic aromatic hydrocarbons and environmental contaminants, may cause endocrine disrupting effects and reproductive impairments in bivalves. However, the molecular mechanisms are still not fully understood. In this study, three reproductive stages (proliferative stage, growing stage and mature stage) of female scallops Chlamys farreri were exposed to B[a]P at 0, 0.38 and 3.8 µg/L. The present study determined the adverse effects of B[a]P on gonadosomatic index, circulating hormone concentrations, endocrine-associated gene expression and ovarian histology. Significant decrease in sex hormones including progesterone (P), testosterone (T) and 17ß-estradiol (E2), was observed in B[a]P-treated C. farreri at growing stage and mature stage. These effects were associated with down-regulated expression of steroidogenic enzymes, including 3ß-HSD, CYP17 and 17ß-HSD, which were regulated by the upstream adenylate cyclase (Adcy) - protein kinase (PKA) signaling pathway. Ovarian transcript levels of estrogen receptor (ER) and caveolin-1 (cav-1) were decreased in B[a]P-treated C. farreri. Vitellogenin (Vtg), an estrogen-mediated gene involved in ovarian development, was down-regulated by B[a]P. Furthermore, ovarian histology was investigated to clarify the impairment of B[a]P on ovaries at growing stage and mature stage. Overall, the present results elucidated the anti-estrogenic mechanisms along the steroidogenic pathway and estrogen signaling pathway for the stage-dependent endocrine-disrupting effects of B[a]P. This finding provides important information regarding to the underlying molecular mechanisms of B[a]P-induced endocrine disruption in different reproductive stages of bivalves. In addition, the adverse effects should be taken into concertation during protection of bivalves germplasm resources and comprehensive evaluation of ecological risks.


Asunto(s)
Benzo(a)pireno , Pectinidae , Animales , Estrógenos , Femenino , Reproducción , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...